skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chernyak, Leonid"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Gallium oxide (Ga2O3) exists in different polymorphic forms, including the trigonal (α), monoclinic (β), cubic (γ), and orthorhombic (κ) phases, each exhibiting distinct structural and electronic properties. Among these, β-Ga2O3 is the most thermodynamically stable and widely studied for high-power electronics applications due to its ability to be grown as high-quality bulk crystals. However, metastable phases such as α-, γ-, and κ-Ga2O3 offer unique properties, including wider bandgap or strong polarization and ferroelectric characteristics, making them attractive for specialized applications. This paper summarizes the radiation hardness of these polymorphs by analyzing the reported changes in minority carrier diffusion length (LD) and carrier removal rates under various irradiation conditions, including protons, neutrons, alpha particles, and gamma rays. β-Ga2O3 demonstrates high radiation tolerance with LD reductions correlated to the introduction of electron traps (E2*, E3, and E4) and gallium–oxygen vacancy complexes (VGa–VO). α-Ga2O3 exhibits slightly better radiation hardness similar to κ-Ga2O3, which also shows minimal LD changes postirradiation, likely due to suppressed defect migration. γ-Ga2O3 is the least thermodynamically stable, but surprisingly is not susceptible to radiation-induced damage, and is stabilized under Ga-deficient conditions. The study highlights the role of polymorph-specific defect dynamics, doping concentrations, and nonuniform electrical properties in determining radiation hardness. We also discuss the effect of radiation exposure on the use of NiO/Ga2O3 heterojunction rectifiers that provide superior electrical performance relative to Schottky rectifiers. The presence of NiO does change some aspects of the response to radiation. Alloying with Al2O3 further modulates the bandgap of Ga2O3 and defect behavior, offering potentially tunable radiation tolerance. These findings provide critical insights into the radiation response of Ga2O3 polymorphs, with implications for their use in aerospace and radiation-hardened power electronics. Future research should focus on direct comparisons of polymorphs under identical irradiation conditions, defect identification, and annealing strategies to enhance radiation tolerance. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. Free, publicly-accessible full text available December 1, 2025
  3. Lateral Schottky or heterojunction rectifiers were irradiated with 10 MeV protons and neutrons. For proton irradiation, the forward current of both types of rectifiers decreased by approximately an order of magnitude, with a corresponding increase in on-state resistance. The resultant on/off ratio improved after irradiation because of the larger decrease in reverse current compared to forward current. Both types of rectifiers displayed a shift in forward current and RON curves to lower voltages after irradiation. This could be due to defects created by neutron irradiation introducing deep energy levels within the bandgap of AlN. These deep levels can trap charge carriers, reducing their mobility and increasing the on-state resistance. Transmission electron microscopy showed disorder created at the AlN/NiO interface by neutron irradiation. TCAD simulation was used to study the effects of irradiation with both protons and neutrons. The results confirmed that the irradiation caused a significant reduction in electron concentration and a small increase in the recombination rate. Neutron irradiation can also introduce interface states at the metal or oxide-semiconductor junction of the rectifier. These interface states can modify the effective Schottky barrier height, affecting the forward voltage drop and on-state resistance. 
    more » « less
  4. The influence of various energetic particles and electron injection on the transport of minority carriers and non-equilibrium carrier recombination in Ga2O3 is summarized in this review. In Ga2O3 semiconductors, if robust p-type material and bipolar structures become available, the diffusion lengths of minority carriers will be of critical significance. The diffusion length of minority carriers dictates the functionality of electronic devices such as diodes, transistors, and detectors. One of the problems in ultrawide-bandgap materials technology is the short carrier diffusion length caused by the scattering on extended defects. Electron injection in n- and p-type gallium oxide results in a significant increase in the diffusion length, even after its deterioration, due to exposure to alpha and proton irradiation. Furthermore, post electron injection, the diffusion length of an irradiated material exceeds that of Ga2O3 prior to irradiation and injection. The root cause of the electron injection-induced effect is attributed to the increase in the minority carrier lifetime in the material due to the trapping of non-equilibrium electrons on native point defects. It is therefore concluded that electron injection is capable of “healing” the adverse impact of radiation in Ga2O3 and can be used for the control of minority carrier transport and, therefore, device performance. 
    more » « less
  5. Abstract 17 MeV proton irradiation at fluences from 3–7 × 1013cm−2of vertical geometry NiO/β-Ga2O3heterojunction rectifiers produced carrier removal rates in the range 120–150 cm−1in the drift region. The forward current density decreased by up to 2 orders of magnitude for the highest fluence, while the reverse leakage current increased by a factor of ∼20. Low-temperature annealing methods are of interest for mitigating radiation damage in such devices where thermal annealing is not feasible at the temperatures needed to remove defects. While thermal annealing has previously been shown to produce a limited recovery of the damage under these conditions, athermal annealing by minority carrier injection from NiO into the Ga2O3has not previously been attempted. Forward bias annealing produced an increase in forward current and a partial recovery of the proton-induced damage. Since the minority carrier diffusion length is 150–200 nm in proton irradiated Ga2O3, recombination-enhanced annealing of point defects cannot be the mechanism for this recovery, and we suggest that electron wind force annealing occurs. 
    more » « less
  6. Minority carrier diffusion length in undoped p-type gallium oxide was measured at various temperatures as a function of electron beam charge injection by electron beam-induced current technique in situ using a scanning electron microscope. The results demonstrate that charge injection into p-type β-gallium oxide leads to a significant linear increase in minority carrier diffusion length followed by its saturation. The effect was ascribed to trapping of non-equilibrium electrons (generated by a primary electron beam) on metastable native defect levels in the material, which in turn blocks recombination through these levels. While previous studies of the same material were focused on probing a non-equilibrium carrier recombination by purely optical means (cathodoluminescence), in this work, the impact of charge injection on minority carrier diffusion was investigated. The activation energy of ∼0.072 eV, obtained for the phenomenon of interest, is consistent with the involvement of Ga vacancy-related defects. 
    more » « less
  7. Forward bias hole injection from 10-nm-thick p-type nickel oxide layers into 10-μm-thick n-type gallium oxide in a vertical NiO/Ga2O3 p–n heterojunction leads to enhancement of photoresponse of more than a factor of 2 when measured from this junction. While it takes only 600 s to obtain such a pronounced increase in photoresponse, it persists for hours, indicating the feasibility of photovoltaic device performance control. The effect is ascribed to a charge injection-induced increase in minority carrier (hole) diffusion length (resulting in improved collection of photogenerated non-equilibrium carriers) in n-type β-Ga2O3 epitaxial layers due to trapping of injected charge (holes) on deep meta-stable levels in the material and the subsequent blocking of non-equilibrium carrier recombination through these levels. Suppressed recombination leads to increased non-equilibrium carrier lifetime, in turn determining a longer diffusion length and being the root-cause of the effect of charge injection. 
    more » « less
  8. It has recently been demonstrated that electron beam injection into p-type β-gallium oxide leads to a significant linear increase in minority carrier diffusion length with injection duration, followed by its saturation. The effect was ascribed to trapping of non-equilibrium electrons (generated by a primary electron beam) at meta-stable native defect levels in the material, which in turn blocks recombination through these levels. In this work, in contrast to previous studies, the effect of electron injection in p-type Ga2O3 was investigated using cathodoluminescence technique in situ in scanning electron microscope, thus providing insight into minority carrier lifetime behavior under electron beam irradiation. The activation energy of ∼0.3 eV, obtained for the phenomenon of interest, is consistent with the involvement of Ga vacancy-related defects. 
    more » « less
  9. Halide vapor phase epitaxial (HVPE) Ga2O3 films were grown on c-plane sapphire and diamond substrates at temperatures up to 550 °C without the use of a barrier dielectric layer to protect the diamond surface. Corundum phase α-Ga2O3 was grown on the sapphire substrates, whereas the growth on diamond resulted in regions of nanocrystalline β-Ga2O3 (nc-β-Ga2O3) when oxygen was present in the HVPE reactor only during film growth. X-ray diffraction confirmed the growth of α-Ga2O3 on sapphire but failed to detect any β-Ga2O3 reflections from the films grown on diamond. These films were further characterized via Raman spectroscopy, which revealed the β-Ga2O3 phase of these films. Transmission electron microscopy demonstrated the nanocrystalline character of these films. From cathodoluminescence spectra, three emission bands, UVL′, UVL, and BL, were observed for both the α-Ga2O3/sapphire and nc-Ga2O3/diamond, and these bands were centered at approximately 3.7, 3.2, and 2.7 eV. 
    more » « less